4.6 Article

Glass-like thermal conductivity gradually induced in thermoelectric Sr8Ga16Ge30 clathrate by off-centered guest atoms

期刊

JOURNAL OF APPLIED PHYSICS
卷 119, 期 18, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4948334

关键词

-

向作者/读者索取更多资源

The origin of the glass-like plateau in thermal conductivity of inorganic type I clathrates has been debated for more than a decade. Here, it is demonstrated that the low temperature thermal conductivity of Sr8Ga16Ge30 can be controlled by the synthesis method: A flux-grown sample has a glass-like plateau in thermal conductivity at low temperature, while a zone-melted sample instead has a crystalline peak. A combination of flux-growth and zone-melting produces an intermediate thermal conductivity. In a comprehensive study of three single crystal samples, it is shown by neutron diffraction that the transition from crystalline peak to glass-like plateau is related to an increase in Sr guest atom off-centering distance from 0.24 angstrom to 0.43 angstrom. By modifying ab initio calculated force constants for the guest atom to an isotropic model, we reproduce both measured heat capacity and inelastic neutron scattering data. The transition from peak to plateau in the thermal conductivity can be modeled by a combined increase of Rayleigh and disorder scattering. Measurement of heat capacity refutes simple models for tunneling of Sr between off-center sites. Furthermore, the electronic properties of the same samples are characterized by Hall carrier density, Seebeck coefficient, and resistivity. The present comprehensive analysis excludes tunneling and charge carrier scattering as dominant contributors to the glass-like plateau. The increased guest atom off-centering distance controlled by synthesis provides a possible microscopic mechanism for reducing the low temperature thermal conductivity of clathrates. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据