4.6 Article

First principles prediction of the electronic structure and carrier mobilities of biaxially strained molybdenum trioxide (MoO3)

期刊

JOURNAL OF APPLIED PHYSICS
卷 120, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4960142

关键词

-

向作者/读者索取更多资源

The electronic band structures of unstrained and biaxially strained MoO3 were determined by first-principles density functional theory calculations. From the band structures, the effects of strain on the charge carrier mobilities were investigated. These mobilities were calculated based on deformation potential theory. First, we found that the electron effective masses of unstrained bulk pristine MoO3 are about three times smaller than the corresponding hole effective masses, and, second, the electron mobility is about ten times the hole mobility, making the compound an electron transport material. Our results also show that, when compressed biaxially, as the strain increases from 0% to 1.5%, the electron (hole) mobility increases by 0% to 53% (0% to 17%). On the other hand, the application of a biaxial tensile strain decreases the electron (hole) mobility by 65% to 0% (90% to 0%), as the tensile strain increases from 0% to 1.5%. These changes are caused mainly by the fact that the carrier effective masses reduce (increase) upon application of compressive (tensile) strain. Only the acoustic-phonon limited carrier mobilities were computed; hence, the actual mobilities cannot be less than the values obtained in this work. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据