4.6 Article

Controllable growth and electrostatic properties of Bernal stacked bilayer MoS2

期刊

JOURNAL OF APPLIED PHYSICS
卷 120, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4963345

关键词

-

资金

  1. National Science Foundation of China [11304398, 11334014, 51173205]

向作者/读者索取更多资源

Compared with the most studied monolayer MoS2, bilayer MoS2 possesses many distinct fascinating physical properties and potential applications owing to interlayer interactions and structural symmetry. Here, bilayer MoS2 domains with strict identical AB Bernal stacked order were controllably synthesized using chemical vapor deposition method. In addition, the electrostatic properties of bilayer MoS2 were systematically investigated by multiple means of photoemission electron microscopy, electrostatic force microscopy, and kelvin probe force microscopy. We found that the work function of monolayer MoS2 is homogeneous across single crystals and polycrystalline films except for grain boundaries. However, the work function of the Bernal stacked bilayer MoS2 decreases by 5064 meV compared with that of monolayer MoS2 due to the interlayer coupling and screening effects. The deeper understanding gained here on the electrostatic properties of the AB Bernal stacked bilayer MoS2 should help in the creation of next-generation electronic and optoelectronic devices. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据