4.6 Article

Band gap engineering of MoS2 upon compression

期刊

JOURNAL OF APPLIED PHYSICS
卷 119, 期 16, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4948376

关键词

-

资金

  1. European Commission [318287, 611004]
  2. Severo Ochoa Centres of Excellence Program [SEV-2015-0496]
  3. Ministerio de Economia y Competitividad (MINECO) [FEDER-MAT2013-40581-P]
  4. Generalitat de Catalunya [2014 SGR 301]

向作者/读者索取更多资源

Molybdenum disulfide (MoS2) is a promising candidate for 2D nanoelectronic devices, which shows a direct band-gap for monolayer structure. In this work we study the electronic structure of MoS2 upon both compressive and tensile strains with first-principles density-functional calculations for different number of layers. The results show that the band-gap can be engineered for experimentally attainable strains (i.e., +/- 0.15). However, compressive strain can result in bucking that can prevent the use of large compressive strain. We then studied the stability of the compression, calculating the critical strain that results in the on-set of buckling for free-standing nanoribbons of different lengths. The results demonstrate that short structures, or few-layer MoS2, show semi-conductor to metal transition upon compressive strain without bucking. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据