4.5 Article

Long-range piezoelectric actuator with large load capacity using inchworm and stick-slip driving principles

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.precisioneng.2022.02.007

关键词

Piezoelectric actuator; Inchworm; Stick-slip; High load capacity; Ball-screw

资金

  1. National Natural Science Founda-tion of China [11902244, 11872050]
  2. Natural Science Foundation of Shaanxi Province, China [2019JQ-606]

向作者/读者索取更多资源

This study proposes a hybrid driving method that combines the inchworm and stick-slip driving principles to significantly improve the load capacity of piezoelectric actuators. It achieves bidirectional motion with fine resolution by relying on a simple driving voltage sequence.
Conventional long-range piezoelectric actuators (LRPAs) can produce large travel motions based on stepping driving actions. However, their load capacity is limited due to the difficulty in lifting the clamping force that acts against the external load when considering light wear on the clamping interface and fine displacement resolution. This study proposes a hybrid driving method that combines the inchworm and stick-slip driving principles, such that it can significantly improve the load capacity of LRPAs. By introducing a ball-screw-based clamping mechanism driven by the stick-slip rotary driving principle, a ball-screw-based inchworm piezoelectric actuator is designed, which achieves a driving force of 546 N, whereas the clamping force required to balance the external load is significantly reduced, leading to light wear on the clamping interface. Meanwhile, bidirectional motion with a resolution of less than 80 nm is achieved by relying only on a simple driving voltage sequence. The proposed hybrid driving method is instructional for the design of actuators used for the shape control of space structures, such as antennas and trusses, wherein a large driving stroke with fine resolution and a high load capacity with high reliability are important considerations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据