4.7 Article

Research Note: Virulence gene downregulation and reduced intestinal colonization of Salmonella enterica serovar Typhimurium PHL2020 isolate in broilers by a natural antimicrobial (NeutraPath™)

期刊

POULTRY SCIENCE
卷 101, 期 6, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.psj.2022.101822

关键词

Salmonella Typhimurium PHL2020 isolate; intestinal colonization; NeutraPath; virulence gene expression; natural antimicrobial

资金

  1. Amlan International

向作者/读者索取更多资源

The reduction in antibiotic use in poultry has created a need for natural solutions to control pathogens like Salmonella. NeutraPath, a natural feed additive, was found to inhibit the growth of Salmonella in vitro and reduce its colonization in broilers in vivo. It also downregulated the expression of virulence genes and preserved intestinal barrier integrity.
The reduction in antibiotic growth promoter use in poultry, due to antibiotic resistance concerns, has created a need for natural solutions that control enteric pathogens like Salmonella. One of these natural feed additives, a select blend of essential oils, fatty acids, and an enterosorbent mineral (NeutraPath), was assessed for its effects on the intestinal colonization of Salmonella enterica serovar Typhimurium PHL2020 isolate (ST-PHL2020) in broiler chickens and ST-PHL2020 virulence gene expression. An in vitro digestion model simulating the pH and enzymatic conditions of 3 gastrointestinal compartments (crop, proventriculus, and intestine) was first used to evaluate the antibacterial effects of NeutraPath on ST-PHL2020. For the in vivo study, day-old male broilers (n = 90) were randomly allocated to 1 of 3 groups: control or NeutraPath supplemented at 0.25 or 0.5%. The dose rates were chosen to enable observable statistical effects during high Salmonella challenge. All groups were challenged with ST-PHL2020 (106 cfu/bird) via oral gavage on day 9. Bacterial load and prevalence of ST-PHL2020 were examined in ceca-cecal tonsils, and intestinal permeability was assessed via serum recovery of fluorescein isothiocyanate dextran (FITC-d) 24 h postchallenge. NeutraPath inhibited (P < 0.05) ST-PHL2020 growth in the in vitro digestion model compared to the control at all concentrations and in all compartments other than NeutraPath 0.25% in the crop. In vivo, NeutraPath 0.25 and 0.5% reduced (P < 0.05) the total cfu recovered and total prevalence of ST-PHL2020 in the ceca. The serum FITC-d levels were also reduced (P < 0.05) by NeutraPath. Further, NeutraPath's effects on ST-PHL2020's Salmonella pathogenicity island-1 virulence network development were explored via treating ST-PHL2020 at subinhibitory concentration (1 mg/mL) of NeutraPath in vitro. Compared to the control, NeutraPath downregulated ST-PHL2020 hilA and invF mRNA expression, which further blocked expression of key downstream effectors involved in ST-PHL2020 invasion. Collectively, NeutraPath has the potential to reduce ST-PHL2020 intestinal colonization in broilers and preserve intestinal barrier integrity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据