4.5 Review

Biodegradable functional macromolecules as promising scaffolds for cardiac tissue engineering

期刊

POLYMERS FOR ADVANCED TECHNOLOGIES
卷 33, 期 7, 页码 2044-2068

出版社

WILEY
DOI: 10.1002/pat.5669

关键词

biodegradable macromolecules; biomaterials; cardiac tissue engineering; electroconductive; synthetic polymers

资金

  1. Tabriz University of Medical Sciences [64726]

向作者/读者索取更多资源

Cardiovascular diseases are a major global health problem, with the loss of cardiac muscle function after myocardial damage being a critical challenge in cardiovascular medicine. Tissue engineering can target the substitution of damaged tissue with functional tissue, with the selection of ideal biomaterial being crucial in cardiac tissue engineering.
Cardiovascular diseases, the major international health problem and the leading cause of death worldwide have been increasing in recent years due to population aging and lifestyle changes. Loss of cardiac muscle function after myocardial damage is one of the most critical challenges in cardiovascular medicine that has not yet been overcome. Tissue engineering (TE) has emerged as a promising therapeutic approach in modern medicine, targeting the substitution of damaged tissue with functional tissue grown inside an artificial scaffold. Great efforts have been made toward the construction of tissue engineering scaffolds that paved the way for extracellular matrix (ECM)-like biomaterial. In cardiac tissue engineering, key parameters must be determined to select the ideal biomaterial, such as biocompatibility, conductivity, mechanical features, degradation and swelling rate, surface properties, and cell viability, growth and proliferation. Among different scaffolding materials, a wide range of natural biological macromolecules and synthetic macromolecules have been utilized to produce scaffolds with multifunctionality for cardiac tissue engineering (CTE). In this review, we have focused on recent achievements in the field of synthetic biodegradable macromolecules (such as aliphatic polyesters, polyurethane, poly (glycerol sebacate)) and the significant strategies to construct electrically conductive scaffolds to regenerate the function of native cardiac tissue. These biodegradable macromolecules have several attractive properties, including biocompatibility, elasticity, good mechanical properties, compatibility with native cardiac tissue, and proper surface biochemistry to increase cardiac cell adhesion, making them appropriate candidates for CTE. Recently, a growing trend in the use of conductive scaffolds for cardiac regeneration has been witnessed. Different materials ranging from metals, ceramics, and polymers have been used as parts of conductive scaffolds for CTE, possessing conductivity assortments from a range of semiconductive to conductive. Moreover, this review paper also focuses on the main strategies to create electroconductive scaffolds for in vitro cardiac muscle regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据