4.7 Article

Coarse-grained molecular dynamics study of elasticity of block copolymers with cubic symmetrical morphology

期刊

POLYMER
卷 243, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2022.124624

关键词

Block copolymer; Microphase separation; Coarse-grained molecular dynamics; Double gyroid; BCC sphere; Elastic property

资金

  1. Japan Society for the Promotion of Science (JSPS) [JP17H06464]

向作者/读者索取更多资源

This study investigated the elasticity of block copolymers through coarse-grained molecular dynamics simulation. The effects of morphology, bridge fraction, and deformation direction on stress-strain curves were studied. The results showed that glassy networks with the DG morphology had higher initial moduli compared to those with the BCC morphology. The rubber elasticity was linearly dependent on the bridge fraction in BCC morphology, but weakly dependent in DG morphology due to the contribution of loop configurations. The effect of deformation direction was insignificant in both morphologies, contrary to experimental results.
In the present study, we investigated the elasticity of block copolymers by coarse-grained molecular dynamics simulation. We focused on two typical cubic symmetry morphologies that mimic thermoplastic elastomers and soft plastics-i.e., body-centered cubic (BCC) and double gyroid (DG). The effects of morphology, bridge fraction, and deformation direction on the stress-strain curves were studied. The deformation of glassy networks with the DG morphology resulted in higher initial moduli than those with the BCC morphology. With the BCC morphology, the rubber elasticity was linearly dependent on the bridge fraction, whereas with the DG morphology the dependency was weak because the loop configuration in the DG networks also contributed to rubber elasticity. In both the BCC and DG morphologies, the effect of deformation direction was insignificant. This was inconsistent with the experimental results. The discrepancy demonstrates the peculiar nature of the coarse-grained bead-spring model in the glassy state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据