4.6 Article

Bacterial profile and antimicrobial susceptibility patterns in cancer patients

期刊

PLOS ONE
卷 17, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0266919

关键词

-

向作者/读者索取更多资源

Bloodstream infections are a significant health issue in cancer patients, with Gram-positive bacteria being the most common causative agents. Staphylococcus aureus is the dominant bacteria followed by coagulase-negative staphylococci, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Pediatric cancer patients are more vulnerable to bloodstream infections.
BackgroundBloodstream infections have been the leading complications in cancer patients because they are at high risk for antibiotic-resistant bacterial infections. There is increasing evidence from different parts of the world of the high prevalence of antimicrobial-resistant bacterial strains in cancer patients. The burden of the infection is high in developing countries, especially in Ethiopia. Data on bacterial profile and antimicrobial susceptibility patterns among cancer patients in Ethiopia is limited. Thus, this study aimed to determine the predominant bacterial species causing bacteremia and their antibiotic resistance pattern among cancer patients at University of Gondar comprehensive specialized hospital. MethodsA hospital-based, cross-sectional study was conducted on 200 study participants from March to July 2021. All cancer patients who developed a fever at the time of hospital visit were included in this study, and their socio-demographic and clinical data were collected using a structured questionnaire. Blood samples (10 mL for adults and 4 mL for children) were collected from each patient, and the collected blood samples were transferred into sterile tryptic soy broth, then incubated at 37 degrees C for 7 days. Tryptic soy broth which showed signs of growth were Gram-stained and sub-cultured on blood agar, chocolate agar, MacConkey agar, and mannitol salt agar. The inoculated plates were then aerobically incubated at 37 degrees C for 18-24 hours and the isolates obtained were identified using standard microbiological methods. Antimicrobial susceptibility tests were done using a modified Kirby-Bauer disk diffusion technique following CLSI 2021 guidelines. Data were entered using EPI data version 4.6 and analyzed with SPSS version 20. ResultsIn this study, out of 200 cancer patients included and 67.5% (135/200) of them were males. The majorities of study participants, 56% (113/200) of cancer patients were pediatrics and 26.5% (53/200) of them belong under five years of age. Out of 200 patient samples that had undergone culture, 27% (54/200) samples had bacterial growth. Gram-positive bacterial isolates were predominant, 61.1%, and S. aureus was the predominant Gram-positive isolate, (51.5.6%), followed by coagulase-negative staphylococci (48.5%). Moreover, K. pneumoniae (47%) and P. aeruginosa (29.5%) were the most common Gram-negative bacterial isolates. Among patients who had BSIs, the highest prevalence of BSIs was observed among males (66.7%), and in pediatrics cancer patients (44.2%). Pediatric study participants were more venerable to bloodstream infection (P = 0.000) compared to adult participants. Meropenem (100%), amikacin (100%), piperacillin/tazobactam (72.3%), and ceftazidime (73.5%) were effective against for Gram-negative isolates while cefoxitin (81.2%) and penicillin (70.5%) were effective for Gram-positive isolates. Additionally, most Gram-negative and Gram-positive bacterial isolates were sensitive for gentamycin (75.9%). Multidrug resistance was seen among 17.1% bacterial isolates, and MDR in Gram-negative and Gram-positive bacteria were 83.3% and 16.7%, respectively. Gram-negative bacterial isolates showed a high prevalence of MDR than Gram-positive isolates. Conclusions and recommendationBSI's remains an important health problem in cancer patients, and Gram-positive bacteria were more common as etiologic agents of BSIs in cancer patients. S. aureus was the dominant bacteria followed by CoNS, K. pneumoniae, and P. aeruginosa. Multidrug-resistant isolates found in cancer patients and routine bacterial surveillance and study of their resistance patterns may guide successful antimicrobial therapy and improve the quality of care. Therefore, strict regulation of antibiotic stewardship and infection control programs should be considered in the study area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据