4.6 Article

Plasma generated ozone and reactive oxygen species for point of use PPE decontamination system

期刊

PLOS ONE
卷 17, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0262818

关键词

-

向作者/读者索取更多资源

This paper presents a study on using plasma reactive oxygen species (ROS) method for decontamination of PPE. The results show that the treated respirators maintain their filtration efficiency and integrity, demonstrating the effectiveness of the plasma ROS method in meeting the increased demand for PPE during the COVID-19 pandemic.
This paper reports a plasma reactive oxygen species (ROS) method for decontamination of PPE (N95 respirators and gowns) using a surface DBD source to meet the increased need of PPE due to the COVID-19 pandemic. A system is presented consisting of a mobile trailer (35 m3) along with several Dielectric barrier discharge sources installed for generating a plasma ROS level to achieve viral decontamination. The plasma ROS treated respirators were evaluated at the CDC NPPTL, and additional PPE specimens and material functionality testing were performed at Texas A&M. The effects of decontamination on the performance of respirators were tested using a modified version of the NIOSH Standard Test Procedure TEB-APR-STP-0059 to determine particulate filtration efficiency. The treated Prestige Ameritech and BYD brand N95 respirators show filtration efficiencies greater than 95% and maintain their integrity. The overall mechanical and functionality tests for plasma ROS treated PPE show no significant variations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据