4.6 Article

Organic amendment plus inoculum drivers: Who drives more P nutrition for wheat plant fitness in small duration soil experiment

期刊

PLOS ONE
卷 17, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0266279

关键词

-

资金

  1. Higher Education Commission of Pakistan via an NRPU [20-3655/RD/HEC/14/400]

向作者/读者索取更多资源

The study investigated the use of phosphate solubilizing bacteria (PSB) and poultry manure (PM) for enhancing soil fertility and wheat production. It was found that the addition of nematodes significantly increased the availability of phosphorus and alkaline phosphatase activity. Furthermore, the combination of PM and biological drivers had a greater impact on the dry biomass and phosphorus concentration of plants compared to the control treatment.
Functioning of ecosystems depends on the nutrient dynamics across trophic levels, largely mediated by microbial interactions in the soil food web. The present study investigated the use of phosphate solubilizing bacteria (PSB) and poultry manure (PM) for maintaining labile P in the soil for an extensive fertility enhancement and as a substitution of chemical fertilizers. Based on the different P solubilizing capabilities of Bacillus and Pseudomonas, a quadruple consortium of Bacillus subtilis, Bacillus cereus, Bacillus thuringiensis and Pseudomonas fluorescens, and their grazer nematodes (soil free living) supplemented with PM were studied. This study was carried out on the trophic levels of soil communities to assess the growth and availability of P to the wheat plants. Experiment was performed for 90 days. Comparing the unamended and amended predator results showed that nematode addition beyond bacterial treatment substantially increased the net available P by approximate to 2 times, and alkaline phosphatase (ALP) activity by 3.3 times. These results demonstrated the nematodes association with increasing nutrient availability or P mineralization. The interactive effect of PM as substrate and biological drivers was more noticeable on plant dry biomass (1.6 times) and plant P concentration (3.5times) compared to the similar unamended treatment. It is concluded that the biological drivers significantly enhanced the soil ALP and available P while the substrate and biological drivers enhanced dry biomass and plant P concentration. Bacterivore nematodes enhanced the effect of PSB for P mineralization via microbial loop and could be used for the enhancement of wheat production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据