4.6 Article

Pacemaking function of two simplified cell models

期刊

PLOS ONE
卷 17, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0257935

关键词

-

资金

  1. JSPS KAKENHI [20K12046]
  2. Grants-in-Aid for Scientific Research [20K12046] Funding Source: KAKEN

向作者/读者索取更多资源

Simplified nonlinear models of biological cells are widely used in computational electrophysiology to reproduce qualitative characteristics of various organs. Compared to complex models, simplified models with few variables and parameters facilitate nonlinear analysis and reduce computational load. This paper investigates the pacemaking variants of two-variable excitable cell models and explores their main nonlinear dynamic features through numerical simulations.
Simplified nonlinear models of biological cells are widely used in computational electrophysiology. The models reproduce qualitatively many of the characteristics of various organs, such as the heart, brain, and intestine. In contrast to complex cellular ion-channel models, the simplified models usually contain a small number of variables and parameters, which facilitates nonlinear analysis and reduces computational load. In this paper, we consider pacemaking variants of the Aliev-Panfilov and Corrado two-variable excitable cell models. We conducted a numerical simulation study of these models and investigated the main nonlinear dynamic features of both isolated cells and 1D coupled pacemaker-excitable systems. Simulations of the 2D sinoatrial node and 3D intestine tissue as application examples of combined pacemaker-excitable systems demonstrated results similar to obtained previously. The uniform formulation for the conventional excitable cell models and proposed pacemaker models allows a convenient and easy implementation for the construction of personalized physiological models, inverse tissue modeling, and development of real-time simulation systems for various organs that contain both pacemaker and excitable cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据