4.6 Article

Risk associations of submicroscopic malaria infection in lakeshore, plateau and highland areas of Kisumu County in western Kenya

期刊

PLOS ONE
卷 17, 期 5, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0268463

关键词

-

资金

  1. National Institutes of Health [U19 AI129326, D43 TW001505]

向作者/读者索取更多资源

Topographic features and seasonality are major correlates of submicroscopic malaria infection in the Lake Victoria area of western Kenya. Residents of lakeshore zones, males, school-aged children, and those living in mud houses have increased risk of submicroscopic malaria infection.
BackgroundPersons with submicroscopic malaria infection are a major reservoir of gametocytes that sustain malaria transmission in sub-Saharan Africa. Despite recent decreases in the national malaria burden in Kenya due to vector control interventions, malaria transmission continues to be high in western regions of the country bordering Lake Victoria. The objective of this study was to advance knowledge of the topographical, demographic and behavioral risk factors associated with submicroscopic malaria infection in the Lake Victoria basin in Kisumu County. MethodsCross-sectional community surveys for malaria infection were undertaken in three eco-epidemiologically distinct zones in Nyakach sub-County, Kisumu. Adjacent regions were topologically characterized as lakeshore, hillside and highland plateau. Surveys were conducted during the 2019 and 2020 wet and dry seasons. Finger prick blood smears and dry blood spots (DBS) on filter paper were collected from 1,777 healthy volunteers for microscopic inspection and real time-PCR (RT-PCR) diagnosis of Plasmodium infection. Persons who were PCR positive but blood smear negative were considered to harbor submicroscopic infections. Topographical, demographic and behavioral risk factors were correlated with community prevalence of submicroscopic infections. ResultsOut of a total of 1,777 blood samples collected, 14.2% (253/1,777) were diagnosed as submicroscopic infections. Blood smear microscopy and RT-PCR, respectively, detected 3.7% (66/1,777) and 18% (319/1,777) infections. Blood smears results were exclusively positive for P. falciparum, whereas RT-PCR also detected P. malariae and P. ovale mono- and co-infections. Submicroscopic infection prevalence was associated with topographical variation (chi(2) = 39.344, df = 2, p<0.0001). The highest prevalence was observed in the lakeshore zone (20.6%, n = 622) followed by the hillside (13.6%, n = 595) and highland plateau zones (7.9%, n = 560). Infection prevalence varied significantly according to season (chi(2) = 17.374, df = 3, p<0.0001). The highest prevalence was observed in residents of the lakeshore zone in the 2019 dry season (29.9%, n = 167) and 2020 and 2019 rainy seasons (21.5%, n = 144 and 18.1%, n = 155, respectively). In both the rainy and dry seasons the likelihood of submicroscopic infection was higher in the lakeshore (AOR: 2.71, 95% CI = 1.85-3.95; p<0.0001) and hillside (AOR: 1.74, 95% CI = 1.17-2.61, p = 0.007) than in the highland plateau zones. Residence in the lakeshore zone (p<0.0001), male sex (p = 0.025), school age (p = 0.002), and living in mud houses (p = 0.044) increased the risk of submicroscopic malaria infection. Bed net use (p = 0.112) and occupation (p = 0.116) were not associated with submicroscopic infection prevalence. ConclusionTopographic features of the local landscape and seasonality are major correlates of submicroscopic malaria infection in the Lake Victoria area of western Kenya. Diagnostic tests more sensitive than blood smear microscopy will allow for monitoring and targeting geographic sites where additional vector interventions are needed to reduce malaria transmission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据