4.6 Article

Identification of western North Atlantic odontocete echolocation click types using machine learning and spatiotemporal correlates

期刊

PLOS ONE
卷 17, 期 3, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0264988

关键词

-

资金

  1. National Oceanic and Atmospheric Administration Cooperative Institute for Marine Ecosystems and Climate award [NA10OAR4320156]
  2. Duke University [283-0280]
  3. HDR MSA [1000300000780]

向作者/读者索取更多资源

This study utilized a combination of machine learning and expert analyst review to analyze 32 years of acoustic data collected at 11 autonomous monitoring sites in the western North Atlantic between 2016 and 2019. The aim was to detect odontocete echolocation clicks, identify dominant click types, and classify clicks. The research identified previously-described click types for eight known odontocete species or genera, as well as six novel delphinid echolocation click types. By considering the spatiotemporal distribution of these unidentified click types and comparing them to historical sighting data, the study was able to attribute probable species identity to three of the new click types.
A combination of machine learning and expert analyst review was used to detect odontocete echolocation clicks, identify dominant click types, and classify clicks in 32 years of acoustic data collected at 11 autonomous monitoring sites in the western North Atlantic between 2016 and 2019. Previously-described click types for eight known odontocete species or genera were identified in this data set: Blainville's beaked whales (Mesoplodon densirostris), Cuvier's beaked whales (Ziphius cavirostris), Gervais' beaked whales (Mesoplodon europaeus), Sowerby's beaked whales (Mesoplodon bidens), and True's beaked whales (Mesoplodon mirus), Kogia spp., Risso's dolphin (Grampus griseus), and sperm whales (Physeter macrocephalus). Six novel delphinid echolocation click types were identified and named according to their median peak frequencies. Consideration of the spatiotemporal distribution of these unidentified click types, and comparison to historical sighting data, enabled assignment of the probable species identity to three of the six types, and group identity to a fourth type. UD36, UD26, and UD28 were attributed to Risso's dolphin (G. griseus), short-finned pilot whale (G. macrorhynchus), and short-beaked common dolphin (D. delphis), respectively, based on similar regional distributions and seasonal presence patterns. UD19 was attributed to one or more species in the subfamily Globicephalinae based on spectral content and signal timing. UD47 and UD38 represent distinct types for which no clear spatiotemporal match was apparent. This approach leveraged the power of big acoustic and big visual data to add to the catalog of known species-specific acoustic signals and yield new inferences about odontocete spatiotemporal distribution patterns. The tools and call types described here can be used for efficient analysis of other existing and future passive acoustic data sets from this region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据