4.6 Article

Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

期刊

JOURNAL OF APPLIED PHYSICS
卷 119, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4939678

关键词

-

资金

  1. Government of the Russian Federation [14.B25.31.0025]
  2. Russian Science Foundation [15-12-10038]
  3. Russian Science Foundation [15-12-10038] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

Pulsed laser deposition has been used to grow thin (10-84 nm) epitaxial layers of Yttrium Iron Garnet Y3Fe5O12 (YIG) on (111)-oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films. (C) 2016 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据