4.7 Article

Phylogeny and evolution of plant Phytochrome Interacting Factors (PIFs) gene family and functional analyses of PIFs in Brachypodium distachyon

期刊

PLANT CELL REPORTS
卷 41, 期 5, 页码 1209-1227

出版社

SPRINGER
DOI: 10.1007/s00299-022-02850-5

关键词

bHLH; PIF; WGDs; Brachypodium distachyon; Functional evolution; Land plants

资金

  1. Shanghai Sailing Program [19YF1414800]

向作者/读者索取更多资源

The origin, phylogeny, and function of plant PIFs have been investigated through comprehensive genomic analysis, revealing their important role in plant growth and development.
Key messages Plant PIFs have been characterized, WGDs contributed to the expansion of class II PIFs; BdPIFs localized in the nucleus; BdPIF4/5C most likely response to high temperature and light stress. Phytochrome interacting factors (PIFs) belong to a small subset of basic helix-loop-helix (bHLH) transcription factors (TFs). As cellular signaling hubs, PIFs integrate multiple external and internal signals to orchestrate the regulation of the transcriptional network, thereby actuating the pleiotropic aspects of downstream morphogenesis. Nevertheless, the origin, phylogeny and function of plant PIFs are not well understood. To elucidate their evolution history and biological function, the comprehensive genomic analysis of the PIF genes was conducted using 40 land plant genomes plus additionally four alga lineages and also performed their gene organizations, sequence features and expression patterns in different subfamilies. In this study, phylogenetic analysis displayed that 246 PIF gene members retrieved from all embryophytes could be divided into three main clades, which were further felled into five distinct classes (Class I-V). The duplications of Class II PIFs were associated specially with whole genome duplication (WGD) events during the plant evolution process. Sequence analysis showed that PIF proteins had a conserved APB motif, and its crucial amino acid residues were relatively high proportion in the average abundance. As expected, subcellular localization analysis revealed that all BdPIF proteins were localized to the nucleus. Especially, BdPIF4/5C showed the highest expression level at high temperature, and the most significant hypocotyl elongation phenotype of overexpression of BdPIFs in Arabidopsis, which was consistent with the function and phenotype of AtPIF4. In brief, our findings provide a novel perspective on the origin and evolutionary history of plant PIFs, and lays a foundation for further investigation on its functions in plant growth and development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据