4.8 Article

Stabilizing a Bosonic Qubit Using Colored Dissipation

期刊

PHYSICAL REVIEW LETTERS
卷 128, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.128.110502

关键词

-

向作者/读者索取更多资源

This article introduces a scheme for stabilizing energy-gap-protected qubits using colored dissipation, specifically focusing on Kerr-cat qubits. This technique effectively suppresses leakage-induced bit-flip errors and improves the performance of quantum bits.
Protected qubits such as the 0-pi qubit, and bosonic qubits including cat qubits and Gottesman-KitaevPreskill (GKP) qubits offer advantages for fault tolerance. Some of these protected qubits (e.g., 0-pi qubit and Kerr-cat qubit) are stabilized by Hamiltonians which have (near-)degenerate ground state manifolds with large energy gaps to the excited state manifolds. Without dissipative stabilization mechanisms the performance of such energy-gap-protected qubits can be limited by leakage to excited states. Here, we propose a scheme for dissipatively stabilizing an energy-gap-protected qubit using colored (i.e., frequency selective) dissipation without inducing errors in the ground state manifold. Concretely we apply our colored dissipation technique to Kerr-cat qubits and propose colored Kerr-cat qubits which are protected by an engineered colored single-photon loss. When applied to the Kerr-cat qubits our scheme significantly suppresses leakage-induced bit-flip errors (which we show are a limiting error mechanism) while only using linear interactions. Beyond the benefits to the Kerr-cat qubit we also show that our frequency selective loss technique can be applied to a broader class of protected qubits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据