4.8 Article

Universality and Intermittency of Pair Dispersion in Turbulence

期刊

PHYSICAL REVIEW LETTERS
卷 128, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.128.114502

关键词

-

资金

  1. National Science Foundation [1854475, CAREER-1905103]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [1854475] Funding Source: National Science Foundation

向作者/读者索取更多资源

Research has found that in turbulent flow, the classical Richardson cubic scaling is not reached when the initial separation between particles tends towards zero, but at a critical value. This critical value does not appear to depend on the Reynolds number, providing an effective way to study universal dispersion dynamics.
Turbulence can disperse a concentrated parcel of pollutants at a rate over nine orders of magnitude higher than its purely diffusive counterpart. One intriguing signature of turbulent dispersion is its superdiffusive scaling. However, the universality of this scaling law is still in question. By leveraging a new laboratory facility, particle pairs with small initial separations can be tracked over four decades of separation in time and five decades of separation in squared displacement, thereby observing the full range of dispersion scaling laws. The results show that the classical Richardson cubic scaling will be reached not for an initial separation asymptotically close to zero but at a critical value, and this value does not appear to depend on the Reynolds number, providing an effective way to study universal dispersion dynamics. Additionally, the results agree well with the prediction based on the multifractal model and may help reconcile different reported scaling laws from laboratory experiments and field studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据