4.8 Article

Hierarchy of Ideal Flatbands in Chiral Twisted Multilayer Graphene Models

期刊

PHYSICAL REVIEW LETTERS
卷 128, 期 17, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.128.176403

关键词

-

资金

  1. National Key Research and Development Program of China [2020YFA0309200]

向作者/读者索取更多资源

This paper proposes models of twisted multilayer graphene that have exactly flat Bloch bands with arbitrary Chern numbers and ideal band geometries. The ideal band geometries and high Chern numbers of the flatbands imply the possibility of hosting exotic fractional Chern insulators, which have unique properties under short-range interactions.
We propose models of twisted multilayer graphene that exhibit exactly flat Bloch bands with arbitrary Chern numbers and ideal band geometries. The models are constructed by twisting two sheets of Bernalstacked multiple graphene layers with only intersublattice couplings. Analytically we show that flatband wave functions in these models exhibit a momentum space holomorphic character, leading to ideal band geometries. We also explicitly demonstrate a generic ???wave function exchange??? mechanism that generates the high Chern numbers of these ideal flatbands. The ideal band geometries and high Chern numbers of the flatbands imply the possibility of hosting exotic fractional Chern insulators which do not have analogues in continuum Landau levels. We numerically verify that these exotic fractional Chern insulators are model states for short-range interactions, characterized by exact ground-state degeneracies at zero energy and infinite particle-cut entanglement gaps.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据