4.8 Article

Coherent Scattering of Low Mass Dark Matter from Optically Trapped Sensors

期刊

PHYSICAL REVIEW LETTERS
卷 128, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.128.101301

关键词

-

资金

  1. U.S. Department of Energy [DE-AC02-05CH11231]
  2. DOE QuantISED program
  3. HeisingSimons foundation
  4. NSF [PHY-1653232]

向作者/读者索取更多资源

In this article, we propose a search for low mass dark matter particles through momentum recoils caused by their scattering from trapped, nanometer-scale objects. Our projections show that even with a modest array of femtogram-mass sensors, parameter space beyond the reach of existing experiments can be explored. The case of smaller, attogram-mass sensors is also analyzed, which enables a large enhancement in the scattering cross-section relative to interactions with single nuclei and has the potential to investigate new parameter space down to dark matter masses as low as 10 keV. If recoils from dark matter are detected by such sensors, their inherent directional sensitivity would allow an unambiguous identification of a dark matter signal.
We propose a search for low mass dark matter particles through momentum recoils caused by their scattering from trapped, nanometer-scale objects. Our projections show that even with a modest array of femtogram-mass sensors, parameter space beyond the reach of existing experiments can be explored. The case of smaller, attogram-mass sensors is also analyzed-where dark matter can coherently scatter from the entire sensor-enabling a large enhancement in the scattering cross-section relative to interactions with single nuclei. Large arrays of such sensors have the potential to investigate new parameter space down to dark matter masses as low as 10 keV. If recoils from dark matter are detected by such sensors, their inherent directional sensitivity would allow an unambiguous identification of a dark matter signal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据