4.6 Article

An overview of the trigger system at the CMS experiment

期刊

PHYSICA SCRIPTA
卷 97, 期 5, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1402-4896/ac6302

关键词

trigger; Level-1 Trigger; High Level Trigger; CMS experiment; LHC

向作者/读者索取更多资源

The trigger system of the Compact Muon Solenoid (CMS) experiment is continuously evolving and being upgraded to handle higher data loads and new experimental signals. These upgrades will increase trigger rates and latency time, as well as provide more granularity and pseudorapidity coverage.
The trigger system of the Compact Muon Solenoid (CMS) experiment at CERN has been evolving continuously since the startup of the LHC. While the base of the current configuration will remain in use for the next LHC running period (Run 3 starting in 2022), new features and algorithms are already being developed to take care of higher data loads due to increasing LHC luminosity and pileup but also of new experimental signatures to be investigated, in particular, displaced decay vertices stemming from relatively long-lived particles created in proton-proton collisions. Beyond this period, the trigger system will undergo a major upgrade to prepare for the high-luminosity LHC (HL-LHC) operations, which will deliver a luminosity of 5-7.5 times the design value. It corresponds to 140-200 pileup events, defined as overlapping proton-proton interactions in the same or nearby bunch crossings. During HL-LHC, information from the silicon pixel and strip tracker will be available already for the Level-1 Trigger, detector granularity and pseudorapidity coverages will increase. Trigger rates will rise by a factor of about 7.5 both at Level-1 (to 750 kHz) and at the High Level Trigger (to 7.5 kHz) and the latency-the processing time available for arriving at the Level-1 trigger decision-will increase significantly from 3.8 mu s to 12.5 mu s, allowing for the use of more sophisticated algorithms at the Level-1 trigger.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据