4.1 Article

Synthesis of antibiotic-modified silica nanoparticles and their use as a controlled drug release system with antibacterial properties

期刊

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/10426507.2022.2049267

关键词

Silica; nanoparticle; modification; drug delivery; antibacterial material

资金

  1. Canakkale Onsekiz Mart University [FYL-2019-3106]

向作者/读者索取更多资源

In this study, monodispersed silica nanoparticles were synthesized and modified to achieve drug release and antibacterial properties. The modified nanoparticles exhibited controlled drug release behavior and showed antibacterial activity against various bacteria.
In this study, monodispersed silica nanoparticles were synthesized using the Stober method. The synthesized nanoparticles underwent a range of surface modifications and were converted to nanoparticles with drug release and antibacterial features. For modification, firstly -NH2 groups were created on the silica nanoparticle surface using (3-Aminopropyl)triethoxysilane (APTES). In the second stage, hexachlorocyclotriphosphazene (Phz) molecules were bound to the silica nanoparticle surfaces due to these amino groups. In the final stage of modification, the chloride groups in the hexachlorocyclotriphosphazene structure were modified with trimethoprim (TMP) and nanoparticles with antibacterial properties were obtained. The modified silica nanoparticles were characterized with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), and Thermogravimetric analysis (TGA). The silica-based nanoparticles were used for release of rhodamine 6G, chosen as a model drug. As a result of the drug release studies, the modified silica nanoparticles were found to abide by the Korsmeyer-Peppas low power model and non-Fickian release mechanism as release model. Additionally, nanoparticles both loaded and not loaded with the model drug were determined to have antibacterial properties against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据