4.7 Article

Geology, U-Pb geochronology and stable isotope geochemistry of the Heihaibei gold deposit in the southern part of the Eastern Kunlun Orogenic Belt, China: A granitic intrusion-related gold deposit?

期刊

ORE GEOLOGY REVIEWS
卷 144, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.oregeorev.2022.104859

关键词

Intrusion-related gold deposit; Monzogranites; Zircon U-Pb dating; LA-ICP-MS trace element analysis; H-O-S-Pb-Hf isotopes; Eastern Kunlun Orogenic Belt

资金

  1. Geological Surveying Project of Geological Survey Party - Geological Survey Bureau of China [12120114080801]
  2. Geological Survey Bureau of China
  3. Chinese Scholarship Council

向作者/读者索取更多资源

The Heihaibei gold deposit, located in the southern part of the Eastern Kunlun Orogenic Belt, is a newly discovered gold deposit. It is characterized by its association with monzogranite and the presence of pre-ore and post-ore gabbro. The age of the gold mineralization is determined to be 439 +/- 3 Ma, and it is suggested to have formed during the subduction stage of the Early Paleozoic Proto-Tethys ocean. The gold mineralization is dominated by pyrite, arsenopyrite, and native gold and is associated with three stages of mineralization. The fluid inclusion and isotope compositions suggest a genetic association between the gold mineralization and granitic magmatism.
The Heihaibei gold deposit is a newly discovered gold deposit in the southern part of the Eastern Kunlun Orogenic Belt. Its most distinctive features are that the gold mineralization is hosted in monzogranite, and that the presence of pre-ore (possibly syn-ore) monzogranite and post-ore gabbro allows to constrain the minerali-zation's formation age. Zircons from the monzogranites yield U-Pb ages of 454 +/- 3 Ma, while zircons separated from the gabbro dikes cutting the monzogranites and gold mineralized body yield U-Pb ages of 439 +/- 3 Ma, which is interpreted to be the minimum age of the Au mineralizing event. Combined with the regional geological background, we proposed that the Heihaibei Au mineralization occurred during the subduction stage of the Early Paleozoic Proto-Tethys ocean. The ore assemblage is dominated by pyrite, arsenopyrite and native gold. The hydrothermal alteration that has led to the peculiar enrichment of Au is not systematically distributed and displays no clear concentric zoning pattern. The main mineralization formed during three stages: the K-feldspar-quartz-pyrite (Py1)-arsenopyrite-sericite-epidote stage (I), the quartz-pyrite (Py2)-native gold-chlorite stage (II), and the quartz-carbonate stage (III). The main gold mineralization occurred during stage II. Fluid inclusion homogenization temperature and salinities decrease from stage I (Th., 268-412 C; W., 6.87-16.63 wt% NaCl equiv.) to stage II (Th., 183-288 C; W., 3.69-14.84 wt% NaCl equiv.). The 818O and 8D values (818OH2O = 4.9 to 9.7%o; 8DV-SMOW =-84.1%o to -81.1%o) of quartz samples from stage I and stage II are comparable to a magmatic-hydrothermal ore-forming fluid that possibly underwent fluid-rock interaction with the Nachitai Group metamorphic rocks during the early ore-forming stage. The relatively uniform 834S values (834SV-CDT = 7.7 to 8.5%o) are slightly elevated compared to magmatic 834S values, but could be derived from a magma if a significant crustal melt component is present. Moreover, the 834S values are within the S isotopic composition range of a granitic reservoir, suggesting that they are probably inherited from the Heihaibei monzogranites. The Pb and Hf isotope compositions imply a close genetic association between the gold mineralization and granitic magmatism, which are both the products of the mixing of crustal and mantle sources. The trace element compositions of pyrite provide additional evidence that the gold mineralization in the Heihaibei deposit was related to the magmatism. Compared with the typical characteristics of orogenic gold and intrusion-related gold systems (IRGS) deposits, the Heihaibei gold deposit may instead be classified as a granitic intrusion-related gold deposit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据