4.5 Article

Pseudo-spectral approach for extracting optical solitons of the complex Ginzburg Landau equation with six nonlinearity forms

期刊

OPTIK
卷 254, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.ijleo.2022.168662

关键词

Complex Ginzburg Landau equation; Optical solitons; Split-step Fourier transform

类别

向作者/读者索取更多资源

In this study, the split-step Fourier transform (SSFT) method is used to analyze the complex Ginzburg-Landau (CGL) equation. Various types of optical soliton solutions are obtained using the numerical approach, and the results are found to be in agreement with the analytical solutions. This numerical technique can be applied to solve other nonlinear evolution partial differential equations in the field of mathematical physics.
In this paper, a compelling pseudo-spectral approach namely split-step Fourier transform (SSFT) is utilized for the first time to report the complex Ginzburg Landau (CGL) equation. In this regard, six nonlinear forms of this notable equation are associated with this model, which are the kerr law nonlinearity, power law nonlinearity, quadratic-cubic nonlinearity, cubic-quintic nonlinearity, dual power nonlinearity, and polynomial law nonlinearity. Since opting for an analytical solution is complicated and only provided for a limited set of soliton solutions, the numerical solution might render a more generalized aspect in addressing versatile solutions for a wide range of arbitrary input pulses. Therefore, the SSFT scheme is efficiently employed to extract a plethora of optical solitons solutions such as kink waves, bright, dark, bright-dark, singular, singular periodic solitons. The obtained results, via MATLAB, are in total agreement with the findings explored form the exact analytical solutions. As a result, this numerical technique may provide a creditable mathematical tool to solve a wide range of other nonlinear evolution partial differential equations in the mathematical physics field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据