4.7 Article

Mechanical and hydrodynamic characteristics of emerged porous Gyroid breakwaters based on triply periodic minimal surfaces

期刊

OCEAN ENGINEERING
卷 254, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.oceaneng.2022.111392

关键词

Triply periodic minimal surface; Emerged porous breakwaters; Wave transmission; Wave-induced forces

资金

  1. Alexander von Humboldt Foundation
  2. European Commission

向作者/读者索取更多资源

This study proposes a novel porous breakwater based on triply periodic minimal surface (TPMS) cellular structure, and investigates its mechanical and hydrodynamic characteristics through experimental and numerical simulations. The results show that the Gyroid cellular structure exhibits better mechanical performance and its porosity affects the maximum load significantly. Computational fluid dynamics simulations reveal that the proposed breakwater can effectively reduce the energy of incident waves, and the porosity variation also influences wave transmission coefficients and wave-induced forces on the structure.
Porous structures with controllable mechanical and hydrodynamic characteristics are prospective candidates for coastal engineering applications. In this paper, a novel emerged porous breakwater based on triply periodic minimal surface (TPMS) cellular structure is proposed. Mechanical behaviour of TPMS structures is analyzed by conducting uniaxial compressive tests for cubic specimens made of cementious material. Numerical finite element method (FEM) is also employed to evaluate mechanical characteristics of cellular structures and then compared them with experimental results. The results show that experimental and numerical approaches well agree. In addition, the mechanical performance of the gyroid cellular structures is better than lattice ones. A 5% change in porosity of Gyroid structure led to an average 5% change in the maximum load obtained, which is expected mechanical behaviour. The Gyroid cellular structure is therefore considered for breakwaters application. Computational fluid dynamics (CFD) simulation through FLUENT is adopted to assess interactions of solitary wave and emerged porous breakwaters based on Gyroid-TPMS. The CFD simulation results show that incident wave reduces approximately by 50% after approaching the porous structure with a porosity of 50%. Besides, the percentage change in the porosity affected the wave transmission coefficients and the wave-induced forces on the structure (5%, 10%, and 15% respectively). A pilot design of a Gyroid breakwater structure with a pile-supported system as a novel solution is suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据