4.7 Article

Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events

期刊

JOURNAL OF APPLIED ECOLOGY
卷 54, 期 3, 页码 997-1007

出版社

WILEY
DOI: 10.1111/1365-2664.12816

关键词

arid zone; grasslands; plant demography; recruitment bottleneck; rehabilitation; seed dormancy; soil water potential; Triodia; vegetation restoration

资金

  1. BHP Billiton Iron Ore, under the Pilbara Seed Atlas project
  2. BHP Billiton Iron Ore
  3. University of Western Australia
  4. Botanic Gardens and Parks Authority

向作者/读者索取更多资源

1. Demographic recruitment processes, such as seed germination and seedling emergence, are critical transitional phases to the re-establishment of degraded plant populations, but often fail due to rainfall not supporting plant requirements. Using species from the widespread arid Australian perennial grass genus Triodia, we investigated the interactions of seeds in different dormancy states and their functional germination envelope in response to water stress after simulated pulse rainfall events. 2. Seed dormancy was alleviated in Triodia species to varying degrees by wet/dry cycling or by removing floret structures from seeds. The seeds were then exposed to different rainfall frequency and quantity events mimicking the 25th, median, 75th and 95th percentile rainfall events found in natural habitats for the study species in the north-west Australian arid zone. 3. Under 95th percentile rainfall conditions recruitment was highest, but still limited to 35% germination and 10% emergence of cleaned seeds (i.e. the least dormant state evaluated). This was related to the functional germination envelope as indicated by more negative base water potential thresholds (Psi(b50)) for cleaned seeds (>= -0.33 MPa) compared to intact florets (>= -0.26 MPa). As a result, the maximum cumulative time where soil water potentials were optimal for germination (Psi(soil) >= Psi(b50)) was 1.6-2.6 times longer for cleaned seeds in large frequent rainfall events when compared to intact florets. Furthermore, seed dormancy, that usually prolongs seed survival, was linked to a short-term reduction in seed viability, which may further reduce recruitment rates. 4. Synthesis and applications. Our findings indicate that large frequent rainfall events raised soil water potentials above critical thresholds for germination and are important for successful plant establishment. If recruitment bottlenecks are a result of seed dormancy and variable rainfall for arid grass species, then this study shows benefits for alleviating seed dormancy prior to seeding in restoration sites, as this increases the environmental envelope for germination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据