4.7 Review

A novel synchronization transition and amplitude death in the local brain networks of cortical regions

期刊

NONLINEAR DYNAMICS
卷 108, 期 4, 页码 2861-2874

出版社

SPRINGER
DOI: 10.1007/s11071-022-07358-x

关键词

Synchronization transition; Order parameter; Local brain networks; Amplitude death

资金

  1. NNSF of China [11835003, 12175070, 82161148012]

向作者/读者索取更多资源

This study reveals that the local networks of cortical regions may show a completely different synchronization transition from the global brain network, and uncovers different synchronization transitions in forward and backward processes. Numerical simulations demonstrate that amplitude death is more likely to occur in larger local networks.
Many evidences have shown that synchronization takes a key role in brain functions, but most of its theoretical studies are so far only focused on the global brain network. However, it is well-known that all the cognitive tasks are performed by individual local cognitive subnetworks but not the global brain network, thus it is necessary to study the synchronization of local brain networks. We here focus on this problem by considering the synchronization transition of all the 63 local subnetworks of a real brain network and interestingly find that these local networks of cortical regions may show a completely different synchronization transition from that of global brain network, i.e., non-monotonic order parameter with folding. Moreover, we find that the forward and backward processes show different synchronization transitions, such as one being the first-order synchronization transition and the other being the second-order synchronization transition, and even amplitude death, depending on the different topologies of local networks. By extensive numerical simulations, we show that the amplitude death is prefer to occur in the local networks with larger size but not prefer to occur in the local networks with smaller size. A brief theoretical analysis is presented to explain the mechanism of amplitude death.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据