4.5 Article

Behavior of Stimulus Response Signals in a Rat Cortical Neuronal Network Under Xe Pressure

期刊

NEUROSCIENCE
卷 496, 期 -, 页码 38-51

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2022.05.027

关键词

multi -electrode array; xenon (Xe) pressure; pulse electrical stimulus; synaptic signal transduction; Hill equation

资金

  1. Japan Society for the Promotion of Science [17340125, 23350001, 17K18834, 26105009]

向作者/读者索取更多资源

The study demonstrates that xenon gas can suppress synchronized bursting and signal transmission between neurons cultured on a multi-electrode array. This suppression is likely due to the simultaneous inhibition of multiple points of action by xenon, leading to a decrease in the apparent number of active neurons contributing to the neuronal network.
cultured on a multi-electrode array show not only spontaneous firing, but also networkspecific burst firing, the latter of which develops into synchronous bursting. Such synchronous bursting can be suppressed by exposure to xenon (Xe) gas. To better understand such suppression of bursting by Xe, we investigate here whether signal transmission between neurons is also suppressed under these conditions. In these experiments, we apply a pulse electrical-stimulus to one electrode and observe the response signals within 10 ms at other active electrodes. When put under a sufficient Xe pressure, some response signals become delayed or vanish after disappearance of synchronous-bursts, particularly signals passing through multiple synaptic bonds. Such bonds have a high probability of having delayed or vanishing signals when the Xe pressure is above 0.3 MPa. The pressure dependence of the response ratio to the stimulus suggests that Xe suppresses multiple points of action simultaneously when suppressing synaptic signal transduction, as observed in the suppression of the synchronized bursting. In addition, we find that the signal that transmits not via synaptic bonding (axon conduction) is also suppressed under Xe gas pressures over 0.3 MPa. Therefore, we conclude that Xeinduced suppression of synchronized bursting is caused mainly by a decrease in the apparent number of active neurons that contribute to the neuronal network, a decrease due to inhibition of signal transmission via synaptic connections.(c) 2022 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据