4.8 Article

Single-cycle infrared waveform control

期刊

NATURE PHOTONICS
卷 16, 期 7, 页码 512-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41566-022-01001-2

关键词

-

资金

  1. Max Planck Society

向作者/读者索取更多资源

By cascaded intrapulse difference-frequency generation, a continuously adjustable single-cycle infrared pulse is achieved and multi-octave single-cycle infrared pulses are obtained in the mid-infrared spectral range. Sub-cycle field control in this wavelength range has potential applications in launching and controlling few-femtosecond electron/hole wavepackets in low-gap materials, expanding bandwidth of electronic signal processing, and electric-field-resolved molecular fingerprinting of biological systems.
Continuously adjustable single-cycle waveform spanning from 0.9 to 12.0 mu m is obtained by cascaded intrapulse difference-frequency generation in a ZnGeP2 crystal. The cascade-associated phase response-distinct for different spectral bands-provides a new tuning parameter for waveform adjustment. Tailoring the electric-field waveform of ultrashort light pulses forms the basis for controlling nonlinear optical phenomena on their genuine, attosecond timescale. Here we extend waveform control from the visible and near-infrared-where it was previously demonstrated-to the mid-infrared spectral range. Our approach yields single-cycle infrared pulses over several octaves for the first time. Sub-10-fs pulses from a carrier-envelope-phase-stabilized, Kerr-lens-mode-locked, diode-pumped Cr:ZnS laser drive cascaded intrapulse difference-frequency generation and control the electric-field evolution of the resulting coherent emission over 0.9-12.0 mu m. Sub-cycle field control in this wavelength range will be instrumental for launching and steering few-femtosecond electron/hole wavepackets in low-gap materials, extending the bandwidth of electronic signal processing to multi-terahertz frequencies, as well as for electric-field-resolved molecular fingerprinting of biological systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据