4.8 Article

A ferroelectric multilevel non-volatile photonic phase shifter

期刊

NATURE PHOTONICS
卷 16, 期 7, 页码 491-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41566-022-01003-0

关键词

-

资金

  1. European Commission [H2020-ICT-2017-1-780997, H2020-ICT-2019-2-871330, H2020-ICT-2019-2-871658, H2020-ICT-2019-2-871391]
  2. National Science Foundation [IRES-1358111]
  3. Armasuisse Science and Technology

向作者/读者索取更多资源

Researchers demonstrate a multilevel non-volatile phase shifter memory that is based on the integration of BaTiO3 thin films and silicon waveguides, achieving analogue and non-volatile optical phase tuning. This study adds an analogue non-volatile photonic element to the integrated photonics toolbox, enabling a new generation of power-efficient programmable photonic circuits.
Researchers demonstrate a multilevel non-volatile phase shifter memory that is based on the monolithic integration of BaTiO3 thin films and silicon waveguides. By manipulating ferroelectric domains in BaTiO3 with electrical control signals, they achieve analogue and non-volatile optical phase tuning. A novel class of programmable integrated photonic circuits has emerged over the past years, strongly driven by approaches to tackle unsolved computing problems in the optical domain. Photonic neuromorphic and quantum computing are examples of optical systems implemented in complex photonic circuits, which are reconfigured before and during operation. However, a key building block to enable efficient reconfigurable optical network architectures is still missing: a non-volatile optical phase shifter. Here we demonstrate such an element-compatible with silicon photonics-based on the monolithic integration of BaTiO3 thin films with silicon waveguides. By manipulating ferroelectric domains in BaTiO3 with electrical control signals, we achieve analogue and non-volatile optical phase tuning with no absorption changes. We demonstrate an eight-level long-term-stable photonic device with non-destructive optical readout and switching energy as low as 4.6 pJ. With our results, an analogue non-volatile photonic element is added to the integrated photonics toolbox, enabling a new generation of power-efficient programmable photonic circuits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据