4.8 Article

Dislocation-strained MoS2 nanosheets for high efficiency hydrogen evolution reaction

期刊

NANO RESEARCH
卷 15, 期 6, 页码 4996-5003

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-022-4158-0

关键词

molybdenum disulfide; dislocation; strain; hydrogen evolution reaction

资金

  1. National Funds for Distinguished Young Scientists [61825503]
  2. National Natural Science Foundation of China [51902101, 61775101, 61804082]
  3. Youth Natural Science Foundation of Hunan Province [2021JJ40044]
  4. Natural Science Foundation of Jiangsu Province [BK20201381]
  5. Science Foundation of Nanjing University of Posts and Telecommunications [NY219144]

向作者/读者索取更多资源

Defect engineering is an effective strategy to optimize the catalytic performance of MoS2 by introducing dislocations. This study successfully synthesized numerous dislocation-strained structures in MoS2 nanosheets through low-temperature hydrothermal synthesis. The high-density dislocations and corresponding strain field resulted in superior catalytic activity under visible light. This work provides a new pathway for improving the catalytic activity of MoS2 through dislocation-strained synergistic modulation.
Defect engineering is one of the effective strategies to optimize the physical and chemical properties of molybdenum disulfide (MoS2) to improve catalytic hydrogen evolution reaction (HER) performance. Dislocations, as a typical defect structure, are worthy of further investigation due to the versatility and sophistication of structures and the influence of local strain effects on the catalytic performance. Herein, this study adopted a low-temperature hydrothermal synthesis strategy to introduce numerous dislocation-strained structures into the in-plane and out-of-plane of MoS2 nanosheets. Superior HER catalytic activity of 5.85 mmol.g(-1).h(-1) under visible light was achieved based on the high-density dislocations and the corresponding strain field. This work paves a new pathway for improving the catalytic activity of MoS2 via a dislocation-strained synergistic modulation strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据