4.8 Article

Tailoring Photoluminescence by Strain-Engineering in Layered Perovskite Flakes br

期刊

NANO LETTERS
卷 22, 期 10, 页码 4153-4160

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.2c00909

关键词

Hybrid organic-inorganic metal halide perovskites; 2D materials; strain engineering; photoluminescence; octahedra tilting

资金

  1. Spanish MICINN [PID2019-108153GA-I00]
  2. Maria de Maeztu Units of Excellence Programme [MDM-2016-0618]

向作者/读者索取更多资源

Strain was applied to a 2D organic-inorganic metal halide perovskite to study its temperature-dependent microphotoluminescence. The results showed that strain can modulate the emission spectrum and band structure, with both tensile and compressive strain observed on the flake surface.
Strain is an effective strategy to modulate the optoelectronicproperties of 2D materials, but it has been almost unexplored in layered hybridorganic-inorganic metal halide perovskites (HOIPs) due to their complex bandstructure and mechanical properties. Here, we investigate the temperature-dependent microphotoluminescence (PL) of 2D(C6H5CH2CH2NH3)2Cs3Pb4Br13HOIP subject to biaxial strain induced by aSiO2ring platform on whichflakes are placed by viscoelastic stamping. At 80 K,we found that a strain of < 1% can change the PL emission from a single peak(unstrained) to three well-resolved peaks. Supported by micro-Raman spectros-copy, we show that the thermomechanically generated strain modulates the bandgap due to changes in the octahedral tilting andlattice expansion. Mechanical simulations demonstrate the coexistence of tensile and compressive strain along theflake. Theobserved PL peaks add an interesting feature to the rich phenomenology of photoluminescence in 2D HOIPs, which can beexploited in tailored sensing and optoelectronic devices

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据