4.7 Article

Pathogen exposure leads to a transcriptional downregulation of core cellular functions that may dampen the immune response in a macroalga

期刊

MOLECULAR ECOLOGY
卷 31, 期 12, 页码 3468-3480

出版社

WILEY
DOI: 10.1111/mec.16476

关键词

macroalgae; marine disease; RNA-seq; seaweed; transcriptome

资金

  1. UNSW Sydney
  2. Australian Government Research Training Program Scholarship

向作者/读者索取更多资源

This study used mRNA-sequencing analysis to investigate the early antipathogen response of the model macroalga Delisea pulchra under the environmental conditions that promote the onset of disease. The study identified unique transcripts affiliated with stress response and signal transduction processes, and revealed the downregulation of genes coding for predicted protein metabolism, stress response, energy generation, and photosynthesis functions in the presence of the opportunistic pathogen. This repression of core cellular processes likely interferes with the macroalgal antipathogen response, leading to infection, tissue damage, and bleaching symptoms.
Diseases in marine eukaryotic organisms caused by opportunistic pathogens represent a serious threat to our oceans with potential downstream consequences for ecosystem functioning. Disease outbreaks affecting macroalgae are of particular concern due to their critical role as habitat-forming organisms. However, there is limited understanding of the molecular strategies used by macroalgae to respond to opportunistic pathogens. In this study, we used mRNA-sequencing analysis to investigate the early antipathogen response of the model macroalga Delisea pulchra (Rhodophyta) under the environmental conditions that are known to promote the onset of disease. Using de novo assembly methods, 27,586 unique transcripts belonging to D. pulchra were identified that were mostly affiliated with stress response and signal transduction processes. Differential gene expression analysis between a treatment with the known opportunistic pathogen, Aquimarina sp. AD1 (Bacteroidota), and a closely related benign strain (Aquimarina sp. AD10) revealed a downregulation of genes coding for predicted protein metabolism, stress response, energy generation and photosynthesis functions. The rapid repression of genes coding for core cellular processes is likely to interfere with the macroalgal antipathogen response, later leading to infection, tissue damage and bleaching symptoms. Overall, this study provides valuable insight into the genetic features of D. pulchra, highlighting potential antipathogen response mechanisms of macroalgae and contributing to an improved understanding of host-pathogen interactions in a changing environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据