4.5 Article

A Method for High-Resolution Three-Dimensional Reconstruction with Ewald Sphere Curvature Correction from Transmission Electron Images

期刊

MICROSCOPY AND MICROANALYSIS
卷 28, 期 5, 页码 1550-1566

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S1431927622000630

关键词

atomic resolution; cryo-EM; Ewald sphere curvature; single-particle analysis; transmission electron microscopy

向作者/读者索取更多资源

This study presents a method for three-dimensional reconstruction of objects from defocused images collected at multiple illumination directions in high-resolution transmission electron microscopy. Numerical simulations show that the proposed method can accurately reconstruct high-resolution defocused images of biological molecules or nanoparticles under experimental conditions. The method is based on diffraction tomography and corrects for Ewald sphere curvature by modifying the phase-retrieval step.
A method for three-dimensional reconstruction of objects from defocused images collected at multiple illumination directions in high-resolution transmission electron microscopy is presented. The method effectively corrects for the Ewald sphere curvature by taking into account the in-particle propagation of the electron beam. Numerical simulations demonstrate that the proposed method is capable of accurately reconstructing biological molecules or nanoparticles from high-resolution defocused images under conditions achievable in single-particle electron cryo-microscopy or electron tomography with realistic radiation doses, non-trivial aberrations, multiple scattering, and other experimentally relevant factors. The physics of the method is based on the well-known Diffraction Tomography formalism, but with the phase-retrieval step modified to include a conjugation of the phase (i.e., multiplication of the phase by a negative constant). At each illumination direction, numerically backpropagating the beam with the conjugated phase produces maximum contrast at the location of individual atoms in the molecule or nanoparticle. The resultant algorithm, Conjugated Holographic Reconstruction, can potentially be incorporated into established software tools for single-particle analysis, such as, for example, RELION or FREALIGN, in place of the conventional contrast transfer function correction procedure, in order to account for the Ewald sphere curvature and improve the spatial resolution of the three-dimensional reconstruction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据