4.7 Article

Photonic crystal sensor for melamine based on magnetic molecularly imprinted nanoparticles self-assembled with an amphiphilic random copolymer

期刊

MICROCHIMICA ACTA
卷 189, 期 6, 页码 -

出版社

SPRINGER WIEN
DOI: 10.1007/s00604-022-05300-x

关键词

Magnetic colloidal nanoparticles; Magneto-responsive photonic crystal; Molecular imprinting technology; Melamine

向作者/读者索取更多资源

The magnetic molecularly imprinted PC sensor for MEL exhibited high sensitivity, fast response time, good selectivity, and strong stability.
Magnetic molecularly imprinted nanoparticles (MMINPs) were obtained with a one-step process through miniemulsion self-assembly using an amphiphilic random copolymer as both an emulsifier and MMINP coating, oleic acid-modified magnetite nanoparticles as magnetic cores, and melamine (MEL) as the template molecule. MMINPs were assembled under an external magnetic field to construct photonic crystal (PC) sensor for naked-eye detection of MEL. The MMINPs were characterized by FT-IR, TEM, TGA, and VSM. The analytical performances of the magnetic molecularly imprinted PC sensor for MEL (MEL-MMIPCs) were investigated with respect to sensitivity, response time, selectivity, and stability. As the MEL concentration increases from 1.0 to 1.0 x 10(6) mu g/l, the reflection wavelength of MEL-MMIPCs shifted from 497 to 709 nm, and was linear with the logarithm of MEL concentration in this range. The detection limit was 0.21 mu g/l (S/N= 3) and response time was within 30 s. The MEL-MMIPC sensor had an imprinting factor of 5.09, and selectivity factors for the analogs cyanuric acid and atrazine were 8.76 and 5.75, respectively, indicating the high sensitivity and selectivity. After 10 cycles of elution/response, MEL-MMIPCs still had a good ability to recognize MEL.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据