4.7 Article

Chemical Links Between Redox Conditions and Estimated Community Proteomes from 16S rRNA and Reference Protein Sequences

期刊

MICROBIAL ECOLOGY
卷 85, 期 4, 页码 1338-1355

出版社

SPRINGER
DOI: 10.1007/s00248-022-01988-9

关键词

16S rRNA; Reference sequences; Estimated community proteome; Chemical metrics; Redox gradients

向作者/读者索取更多资源

By combining taxonomic abundances from 16S rRNA gene sequencing datasets with reference microbial proteomes from the NCBI RefSeq database, the carbon oxidation state of estimated community proteomes can be used as a proxy for environmental redox conditions. Analysis of multiple datasets confirms this prediction.
Environmental influences on community structure are often assessed through multivariate analyses in order to relate microbial abundances to separately measured physicochemical variables. However, genes and proteins are themselves chemical entities; in combination with genome databases, differences in microbial abundances directly encode for chemical variability. We predicted that the carbon oxidation state of estimated community proteomes, obtained by combining taxonomic abundances from published 16S rRNA gene sequencing datasets with reference microbial proteomes from the NCBI Reference Sequence (RefSeq) database, would reflect environmental oxidation-reduction conditions. Analysis of multiple datasets confirms the geobiochemical predictions for environmental redox gradients in hydrothermal systems, stratified lakes and marine environments, and shale gas wells. The geobiochemical signal is largest for the steep redox gradients associated with hydrothermal systems and between injected water and produced fluids from shale gas wells, demonstrating that microbial community composition can be a chemical proxy for environmental redox gradients. Although estimates of oxidation state from 16S amplicon and metagenomic sequences are correlated, the 16S-based estimates show stronger associations with redox gradients in some environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据