4.7 Article

Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway

期刊

MICROBIAL CELL FACTORIES
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12934-022-01807-3

关键词

Ergothioneine; Biosynthesis; Heterologous expression; Trichoderma reesei; Neurospora crassa; Escherichia coli

资金

  1. National Natural Science Foundation of China [30970073]
  2. Program of China Ocean Mineral Resources RD Association [DY135-B2-02]
  3. National Key R&D Program of China [2018YFC0310703]

向作者/读者索取更多资源

Through genetic engineering, genes from Trichoderma reesei and N. crassa were successfully transferred to E. coli, enabling efficient synthesis of ergothioneine. The combination of genes from T. reesei showed the best synthesis efficiency, reaching up to 4.34 g/L per liter.
Background Ergothioneine (ERG) is a potent histidine-derived antioxidant that confers health-promoting effects. Only certain bacteria and fungi can biosynthesize ERG, but the ERG productivity in natural producers is low. ERG overproduction through genetic engineering represents an efficient and cost-effective manufacturing strategy. Results Here, we showed that Trichoderma reesei can synthesize ERG during conidiogenesis and hyphal growth. Co-expression of two ERG biosynthesis genes (tregt1 and tregt2) from T. reesei enabled E. coli to generate 70.59 mg/L ERG at the shaking flask level after 48 h of whole-cell biocatalysis, whereas minor amounts of ERG were synthesized by the recombinant E. coli strain bearing only the tregt1 gene. By fed-batch fermentation, the extracellular ERG production reached 4.34 g/L after 143 h of cultivation in a 2-L jar fermenter, which is the highest level of ERG production reported thus far. Similarly, ERG synthesis also occurred in the E. coli strain engineered with the two well-characterized genes from N. crassa and the ERG productivity was up to 4.22 g/L after 143 h of cultivation under the above-mentioned conditions. Conclusions Our results showed that the overproduction of ERG in E. coli could be achieved through two-enzymatic steps, demonstrating high efficiency of the fungal ERG biosynthetic pathway. Meanwhile, this work offers a more promising approach for the industrial production of ERG.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据