4.6 Article

Efficient dose-rate correction of silicon diode relative dose measurements

期刊

MEDICAL PHYSICS
卷 49, 期 6, 页码 4056-4070

出版社

WILEY
DOI: 10.1002/mp.15628

关键词

diode detectors; dose-rate dependence; relative dosimetry; radiotherapy dosimetry; semiconductors; small field dosimetry

资金

  1. Natural Sciences and Engineering Research Council of Canada [NSERC CRDPJ/502332-2016]
  2. Calcul Quebec
  3. Compute Canada

向作者/读者索取更多资源

This study proposes an effective and precise method to correct the dose-rate dependence of silicon diode detectors in the context of clinical relative dosimetry.
Purpose Silicon diodes are often the detector of choice for relative dose measurements, particularly in the context of radiotherapy involving small photon beams. However, a major drawback lies in their dose-rate dependency. Although ionization chambers are often too large for small field output factor (OF) measurements, they are valuable instruments to provide reliable percent-depth dose (PDD) curves in reference beams. The aim of this work is to propose a practical and accurate method for the characterization of silicon diode dose-rate dependence correction factors using ionization chamber measurements as a reference. Methods The robustness of ionization chambers for PDD measurements is used to quantify the dose-rate dependency of a diode detector. A mathematical formalism, which exploits the error induced in percent-depth ionization (PDI) curves for diodes by their dose-rate dependency, is developed to derive a dose-rate correction factor applicable to diode relative measurements. The method is based on the definition of the recombination correction factor given in the addendum to TG 51 and is applied to experimental measurements performed on a CyberKnife M6 radiotherapy unit using a PTW 60012 diode detector. A measurement-based validation is provided by comparing corrected PDI curves to measurements performed with a PTW 60019 diamond detector, which does not exhibit dose-rate dependence. Results Results of dose-rate correction factors for PDI curves, off-axis ratios (OARs), tissue-phantom ratios, and small field OFs are coherent with the expected behavior of silicon diode detectors. For all considered setups and field sizes, the maximum correction and the maximum impact of the uncertainties induced by the correction are obtained for OARs for the 60 mm collimator, with a correction of 2.5% and an uncertainty of 0.34%. For OFs, corrections range from 0.33% to 0.82% for all field sizes considered, and increase with the reduction of the field size. Comparison of PDI curves corrected for dose-rate and for in-depth beam quality variations illustrates excellent agreement with measurements performed using the diamond detector. Conclusion The proposed method allows the efficient and precise correction of the dose-rate dependence of silicon diode detectors in the context of clinical relative dosimetry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据