4.5 Article

Methylation Mediated Silencing of miR-155 Suppresses the Development of Preeclampsia In Vitro and In Vivo by Targeting FOXO3

期刊

MEDIATORS OF INFLAMMATION
卷 2022, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2022/4250621

关键词

-

资金

  1. Key specialized research and development program in Henan province [212102310473]

向作者/读者索取更多资源

This study explores the role of miR-155 in the inflammatory pathogenesis of preeclampsia. Results show that the methylation levels of miR-155 are correlated with the inflammatory response in placental tissue. Overexpression of miR-155 inhibits trophoblast cell viability and migration, while inhibition of miR-155 suppresses inflammation and oxidative stress, while promoting cell proliferation and migration.
Preeclampsia (PE) is a common pregnancy-related syndrome characterized by chronic immune activation. This study is aimed at exploring the role of miR-155 in the inflammatory pathogenesis of PE. Placental tissues and peripheral blood were collected from all subjects. BSP detection analysis was performed to evaluate miR-155 methylation levels. ELISA was performed to measure the levels of inflammatory cytokines and MMP2 in serum samples and cellular supernatants. HTR-8/SVneo and JEG-3 cells were transfected with miR-155 mimic and the inhibitor to establish the overexpressed miR-155 and silenced miR-155 cell models, respectively. Treatment with 5-Aza was performed to alter the DNA methylation level of miR-155. The PE rat model was established after subcutaneous injection of NG-nitro-L-arginine methyl ester. The CCK-8 assay, TUNEL staining, and Transwell assay were performed. Reverse transcription-quantitative PCR, Western blot analysis, and immunohistochemical assay were used to analyze related gene expression levels. The luciferase reporter assay was used to investigate the direct interaction between FOXO3 and miR-155. Results showed that miR-155 was remarkably upregulated and inversely correlated with the promoter methylation level in the placental tissue from PE patients. The in vitro experiments indicated that miR-155 decreased viability, migration, and invasion, but increased apoptosis in trophoblast cells. FOXO3 was confirmed as the target of miR-155. Transfection of the miR-155 inhibitor suppressed inflammation and oxidative stress, but elevated proliferation, migration, and invasion of trophoblast cells, which were abolished by 5-Aza treatment or cotransfection with si-FOXO3. In summary, our data suggested that methylation-mediated silencing of miR-155 can inhibit the apoptosis, inflammation, and oxidative stress of trophoblast cells by upregulating FOXO3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据