4.6 Article

Speed sensorless control of a bearingless induction motor with combined neural network and fractional sliding mode

期刊

MECHATRONICS
卷 82, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.mechatronics.2021.102721

关键词

A bearingless induction motor (BIM); Neural network; Fractional order; Sliding mode control; Speed sensorless

向作者/读者索取更多资源

In this paper, a speed sensorless control strategy is proposed to address the problem of speed and flux observation in a bearingless induction motor under parameter changes and external disturbances. The strategy combines radial basis function neural network and fractional sliding mode control. Simulation and experimental results show that this method can effectively identify the flux and speed under different conditions and ensure good rotor suspension stability.
To address the problem of speed and flux observation in sensorless control of a bearingless induction motor under the influence of parameter changes and external disturbances, a speed sensorless control strategy combining radial basis function (radial basis function, RBF) neural network and fractional sliding mode is proposed. According to the current error, fractional sliding mode control rate is designed to reduce the speed-observed chatter of the bearingless induction motor and its adverse effect on the rotor suspension stability. Then, combined with the theory of RBF neural network, the new optimal control rate is obtained by using its approximation ability. At the same time, the stability of two control rate is proved. Thus, the flux linkage and speed under normal operation, parameter change and external disturbance are observed and the new speed sensorless control is realized. The simulation and experimental results show that the proposed joint RBF neural network approximation algorithm and fractional sliding mode speed sensorless control system of the bearingless induction motor can not only effectively identify the flux and speed under three conditions of no-load, load disturbance and speed change, but also ensure the good suspension of the motor rotor in the x-axis and y-axis directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据