4.5 Article

Development of a hybrid artificial intelligence model to predict the uniaxial compressive strength of a new aseismic layer made of rubber-sand concrete

期刊

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES
卷 30, 期 11, 页码 2185-2202

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15376494.2022.2051780

关键词

Rubber-sand concrete; uniaxial compressive strength; back propagation neural network; swarm intelligence optimization algorithm

向作者/读者索取更多资源

This study proposes a novel rubber-sand concrete (RSC) as an aseismic material and uses an artificial intelligence model, the back propagation neural network (BPNN), to predict its uniaxial compressive strength (UCS). The results show that the LSO-BPNN hybrid model has the best prediction capability. Sensitivity analysis reveals that rubber and sand have the greatest impact on UCS prediction.
This study, proposes the use of a novel rubber-sand concrete (RSC) material, which comprises rubber particles, sand, and cement, as an aseismic material in practical engineering construction. The uniaxial compressive strength (UCS) of damping materials is an important factor that directly affects the seismic activity in underground structures. To predict the UCS of RSC, artificial intelligence model back propagation neural network (BPNN), which is optimized through four swarm intelligence optimization (SIO) algorithms: particle swarm optimization algorithm (PSO), fruit fly optimization algorithm (FOA), lion swarm optimization algorithm (LSO), and sparrow search algorithm (SSA), is used. The dataset for the prediction models was obtained from uniaxial compression tests in the RSC laboratory. The performances of the four hybrid intelligence models were evaluated using six performance indicators: the root mean square error (RMSE), correlation coefficient (R), determination coefficient (R-2), mean absolute error (MAE), mean square error (MSE), and sum of square error (SSE).The prediction capability of these models was graded based on these indicators using a ranking system. The results show that the prediction ability of the LSO-BPNN hybrid model is better than that of the three other hybrid models, with RMSE of (1.0635, 1.2352), R of (0.9887, 0.9713), R-2 of (0.9776, 0.9165), MAE of (0.7257, 0.8243), MSE of (1.1352, 1.5256), SSE of (64.7074, 36.6151), and ranking score of (24, 24) in the training and testing phases, respectively. Therefore, the LSO-BPNN hybrid model is an efficient and accurate method for predicting the UCS of RSCs. Sensitivity analysis showed that rubber and sand were the most important elements that affected UCS prediction, followed by cement, with the lowest relative importance being RPZ. This study provides guidance for the extension and application of RSC materials to underground seismic engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据