4.8 Article

Structure-performance correlation guided applications of covalent organic frameworks

期刊

MATERIALS TODAY
卷 53, 期 -, 页码 106-133

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.mattod.2022.02.001

关键词

Covalent organic frameworks; Large-scale synthesis; Performance; Practical applications; Structure design

资金

  1. National Nature Science Foundation of China [22178091, 72088101, 51739004]
  2. Ministry of Education Singapore under the Academic Research Funds [MOET2EP10120-0003, RG3/21]

向作者/读者索取更多资源

This review provides an insightful understanding of COFs from a structural perspective and correlates them with their performance in practical applications. It addresses the synthesis challenges of COFs and discusses their structural and physicochemical properties in relation to different functions. Furthermore, it presents discussions on the correlation between structural characteristics of COFs and their performance in various fields, as well as future directions for function-oriented design and scalable production of COFs.
Pre-designed structures and tailor-made functions make covalent organic frameworks (COFs) quickly become promising reticular platforms for multidisciplinary fields. Despite the overarching success, controllable and large-scale synthesis of COFs is still a huge challenge. Moreover, the relationship between the structure and performance of COFs in various fields has not been well understood, seriously limiting their practical applications. In this review, we provide an insightful and fundamental understanding of COFs from structural perspectives, and correlate them with eventual performance in practical applications. By summarizing both the top-down and bottom-up approaches, we address how typical issues, such as the size, morphology, dispersity and stability of COFs, are resolved, which should be crucial for their function-oriented and large-scale production. Structural and physicochemical properties, such as pores, ligands, stacking, linkages, functional group, morphology, crystallinity, dimensionality and wetting, are also discussed in relation to various functions. In addition, in-depth discussions regarding the correlations between structural characteristics of COFs and their performance in catalysis, energy storage, gas/liquid adsorption and membrane separation are presented. Finally, perspectives for the future direction of this field are proposed, to provide useful guidance for the function-oriented design and scalable production of COFs to meet the practical requirements of applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据