4.7 Article

Unexpected crystallographic structure, phase transformation, and hardening behavior in the AlCoCrFeNiTi0.2 high-entropy alloy after high-dose nitrogen ion implantation

期刊

MATERIALS & DESIGN
卷 216, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2022.110568

关键词

High-entropy alloys; High-entropy ceramics; Ion implantation; Irradiation; Phase transformation

向作者/读者索取更多资源

This study investigates the crystal structural defects induced in a high-entropy alloy by nitrogen ion implantation and discovers the formation of new high- or medium-entropy ceramics. The results show that the implanted material exhibits increased hardness and wear resistance, as well as unexpected improvements in the hardness-to-Young's modulus ratio and elastic recovery.
Harsh environments, such as nuclear power plants, require the development of materials with stable properties when exposed to radiation/bombardment conditions. In this work, a bulk high-entropy alloy (HEA) was implanted with nitrogen ions accelerated at 50 kV to induce and study crystal structural defects. X-ray powder diffraction (XRD) showed that the studies HEA consisted of two phases-r and body-centered cubic (BCC)-and underwent the r to BCC phase transformation due to ion bombardment. Unexpectedly, XRD peaks of implanted samples could not be assigned to any known simple nitride, a finding that suggests the creation of new high- or medium-entropy ceramics. Studies of the mechanical and tribological properties with the use of nanoindentation and scratch tests revealed a hardening of both phases of the implanted surface and higher wear resistance. There were also surprising increases in the hardness-to-Young's modulus ratio and elastic recovery for both phases. The results are promising not only for the nuclear applications, but also for space applications, mechanical engineering, and tribology. (c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据