4.7 Article

Daidzin targets epithelial-to-mesenchymal transition process by attenuating manganese superoxide dismutase expression and PI3K/Akt/mTOR activation in tumor cells

期刊

LIFE SCIENCES
卷 295, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2022.120395

关键词

Daidzin; EMT; MnSOD; PI3K/Akt/mTOR

资金

  1. National Research Foundation of Korea (NRF) - Korean government (MSIP) [NRF-2021R1I1A2060024]

向作者/读者索取更多资源

DDZ regulates MnSOD and EMT process by targeting PI3K/Akt/mTOR pathway in colorectal and prostate cancer cell lines.
Aims: Epithelial-mesenchymal transition (EMT) is a process during which epithelial cells lose their polarity and gain invasive properties to transform into mesenchymal cells. A few recent studies have reported that manganese superoxide dismutase (MnSOD) can effectively modulate EMT phenotype by influencing cellular redox environment via altering the intracellular ratio between O-2(-) and H2O2. Daidzin (DDZ), a naturally occurring isoflavone isolated from Pueraria lobate (Fabaceae), has numerous pharmacologic effects including anti-cholesterol, anti-angiocardiopathy, anti-cancer. However, the potential inhibitory impact of DDZ on cancer metastasis and specifically on the EMT process has not been evaluated. We aimed to evaluate the possible relationship between MnSOD and EMT as well as influence of DDZ on these two processes in colon and prostate carcinoma cells.Main methods: Cell viability was measured by MTT and real time cell analysis (RTCA) assay. Protein expression level of EMT markers and Akt/mTOR/PI3K signaling pathway were evaluated by Western blot analysis. Expression of EMT markers in cells was observed by immunocytochemistry. Cell invasion and migrations were evaluated by wound healing assay and Boyden chamber assay.Key findings: DDZ can block EMT accompanied with down-regulation of MnSOD, fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, twist, and Snail, and up-regulation of occludin and E-cadherin in both unstimulated and TGF beta-induced cells. In addition, DDZ exposure also attenuated cell proliferation, invasion, and metastasis by reversing the EMT process in SNU-C2A, DU145, and PC-3 cells. DDZ treatment also modulated activation of PI3K/Akt/mTOR signaling cascades in DU145 cells. Moreover, an overexpression of MnSOD or silencing of MnSOD expression modulated EMT-related proteins, PI3K/Akt/mTOR activation and invasive activity.Significance: This is first finding on the DDZ in regulating MnSOD and EMT process by targeting PI3K/Akt/mTOR pathway in both colorectal and prostate cancer cell lines. Our data indicated that DDZ might act as a potent suppressor of EMT by affecting MnSOD expression in tumor cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据