4.6 Article

Bridging Effect of S-C Bond for Boosting Electron Transfer over Cubic Hollow CoS/g-C3N4 Heterojunction toward Photocatalytic Hydrogen Production

期刊

LANGMUIR
卷 38, 期 23, 页码 3244-3256

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.1c03379

关键词

-

资金

  1. Natural Science Foundation of the Ningxia Hui Autonomous Region [2021AAC03220]
  2. National Natural Science Foundation of China [21975084]

向作者/读者索取更多资源

The construction of interfacial effects and chemical bonds between catalysts can effectively facilitate photogenerated electron transfer. In this study, a novel catalyst was successfully constructed and connected with a photocatalyst through a chemical bond, acting as a bridge for electron transmission. Furthermore, it was found that this chemical bond can rapidly transfer photogenerated carriers and achieve high-efficiency hydrogen evolution. The experimental results showed that this structure can enhance the hydrogen production compared to traditional materials.
The construction of interfacial effects and chemical bonds between catalysts is one of the effective strategies to facilitate photogenerated electron transfer. A novel hollow cubic CoS is derived from Co-ZIF-9 and the S-C bond is successfully constructed between CoS and g-C3N4. The S-C bond acts as a bridge for electronic transmission, allowing the rapid transmission of photoelectron to hydrogen evolution active site in CoS. In addition, the results of electrochemical impedance spectroscopy and time-resolved photoluminescence spectroscopy show that the S-C bond acts as a bridge to quickly transfer photogenerated carriers in the composite material, and achieves the effect of high-efficiency hydrogen evolution. The hydrogen production of SgZ-45 reaches 9545 mu mol.g(-1) in 5 h, which is 53 and 12 times that of g-C3N4 and ZIF-9, respectively. The intrinsic mechanism of photoelectron transfer through S-C bonds can be further confirmed by density functional theory (DFT) calculations. This work provides new insights for building a chemical bond electron transfer bridge between MOF derivatives and nonmetallic photocatalytic materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据