4.7 Article

Emissions of nitrogenous pollutants in chemical looping gasification of high nitrogen wood waste using a K-modified copper slag oxygen carrier

期刊

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
卷 147, 期 17, 页码 9725-9735

出版社

SPRINGER
DOI: 10.1007/s10973-021-11177-4

关键词

High Nitrogen Wood Waste (HNWW); Chemical Looping Gasification (CLG); K-modified Copper Slag; NH3; HCN

资金

  1. National Natural Science Foundation of China [52076209, 51776210]
  2. Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) [GML2019ZD0108]
  3. Guangdong Basic and Applied Basic Research Foundation [2019B1515120022]
  4. Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering [2018-K15, 2021-K25]
  5. Youth Innovation Promotion Association CAS [2018384]

向作者/读者索取更多资源

This study investigates the characteristics of Chemical Looping Gasification of high nitrogen wood waste (HNWW) using K-modified copper slag as an oxygen carrier (OC) candidate, and examines the emissions of nitrogenous pollutants. The findings show that 10% mass-loaded K-modified copper slag has higher reactivity and can significantly reduce the content of nitrogenous pollutants in HNWW.
This study uses K-modified copper slag as an oxygen carrier (OC) candidate to examine the characteristics of Chemical Looping Gasification (CLG) of high nitrogen wood waste (HNWW) and investigated the emissions of nitrogenous pollutants (NH3/HCN). K modification significantly improves the reactivity of original copper slag because some new species were generated. The calcined copper slag loaded with 10 mass% K (10 K-CS) has relatively higher performance, thus, it was selected as an OC in the CLG of HNWW. The presence of 10 K-CS significantly promotes the conversion of HNWW, especially the char conversion. A suitable HNWW to 10 K-CS mass ratio was determined as 3:7. The OC not only promotes the release of nitrogen (N) in HNWW and oxidizes the reducing nitrogenous-pollutants, thus, the generated NH3 and HCN content decrease significantly. Compared with HNWW pyrolysis, the NH3 and HCN content decrease by 78.86% and 46.20%, respectively, at the mass ratio of HNWW to 10 K-CS of 1:10. High temperature promotes the non-gas-phase nitrogen in char/tar to be converted into the nitrogenous pollutants. A long residence time facilitates the oxidization of nitrogenous pollutants. The introduction of steam promotes the release of nitrogenous pollutants, especially NH3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据