4.7 Article

How hidden 3D structure within crack fronts reveals energy balance

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2022.104795

关键词

Griffith criterion; Energy balance; Bistability; Fracture toughness; Faceted crack

资金

  1. Israel Science Foundation [840/19]
  2. Lady Davis Fellowship Trust, Israel
  3. SNSF, Switzerland [200021_197162]
  4. International Research Project 'Non-Equilibrium Physics of Complex Systems' (IRP-PhyComSys, France-Israel)
  5. Swiss National Science Foundation (SNF) [200021_197162] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The secondary structure of low-speed crack propagation in hydrogels has a significant influence on energy balance, and its implementation must account for local dynamic dissipation along the crack front.
Griffith's energetic criterion, or 'energy balance', has for a century formed the basis for fracture mechanics; the energy flowing into a crack front is precisely balanced by the dissipation (fracture energy) at the front. If the crack front structure is not properly accounted for, energy balance will either appear to fail or lead to unrealistic results. Here, we study the influence of the secondary structure of low-speed crack propagation in hydrogels under tensile loading conditions. We first show that these cracks are bistable; either simple (cracks having no secondary structure) or faceted crack states (formed by steps propagating along crack fronts) can be generated under identical loading conditions. The selection of either crack state is determined by the form of the initial 'seed' crack; perfect seed cracks generate simple cracks while a small local mode III component generates crack fronts having multiple steps. Step coarsening eventually leads to single steps that propagate along crack fronts. As they evolve, steps locally change the instantaneous structure and motion of the crack front, breaking transverse translational invariance. In contrast to simple cracks, faceted cracks can, therefore, no longer be considered as existing in a quasi-2D system. For both simple and faceted cracks we simultaneously measure the energy flux and local dissipation along these crack fronts over velocities, v, spanning 0 < v < 0.2cR (cR is the Rayleigh wave speed). We find that, in the presence of secondary structure within the crack front, the implementation of energy balance must be generalized for 3D systems; faceted cracks reveal energy balance, only when we account for the local dynamic dissipation at each point along the crack front.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据