4.8 Article

Reducing Energy Disorder in Perovskite Solar Cells by Chelation

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 144, 期 12, 页码 5400-5410

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.1c12732

关键词

-

资金

  1. National Key Research and Development Program of China [2020YFB1506400]
  2. National Natural Science Foundation of China [21774090]
  3. Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

A series of fullerene dyads were designed and used as electron transport materials in inverted perovskite solar cells. Among them, FP-C8 showed the best performance in terms of energy disorder and morphological stability. Devices using FP-C8 as the electron transport material achieved higher power conversion efficiency compared to those using traditional PCBM. Moreover, FP-C8-based devices exhibited better moisture and thermal stability.
In inverted perovskite solar cells (PSCs), the fullerene derivative [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) is a widely used electron transport material. However, a high degree of energy disorder and inadequate passivation of PCBM limit the efficiency of devices, and severe self-aggregation and unstable morphology limit the lifespan of devices. Here, we design a series of fullerene dyads FP-Cn (n = 4, 8, 12) to replace PCBM as an electron transport layer, where [60]fullerene is linked with a terpyridine chelating group via a flexible alkyl chain of different lengths as a spacer. Among three fullerene dyads, FP-C8 shows the most enhanced molecule ordering and adhesion with the perovskite surface due to the balanced decoupling between the chelation effect from terpyridine and the self-assembly of fullerene, leading to lower energy disorder and higher morphological stability relative to PCBM. The FP-C8/C60-based devices using Cs(0.05)FA(0.90)MA(0.05)PbI(2.85)Br(0.15) as a light absorber show a power conversion efficiency of 21.69%, higher than that of PCBM/C60 (20.09%), benefiting from improved electron extraction and transport as well as reduced charge recombination loss. When employing FAPbI(3) as a light absorber, the FP-C8/C60-based devices exhibit an efficiency of 23.08%, which is the champion value of inverted PSCs with solution-processed fullerene derivatives. Moreover, the FP-C8/C60-based devices show better moisture and thermal stability than PCBM/C60-based devices and maintain 96% of their original efficiency after 1200 h of operation, while their counterpart PCBM/C60 maintains 60% after 670 h.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据