4.8 Article

Accelerated Synthesis and Discovery of Covalent Organic Framework Photocatalysts for Hydrogen Peroxide Production

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 144, 期 22, 页码 9902-9909

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c02666

关键词

-

资金

  1. Leverhulme Trust via the Leverhulme Research Centre for Functional Materials Design
  2. China Scholarship Council
  3. UCL [PR16195]

向作者/读者索取更多资源

A high-throughput sonochemical synthesis and testing strategy was developed to discover covalent organic frameworks (COFs) for photocatalysis. Among the screened COFs, one showed excellent photocatalytic activity for hydrogen peroxide production, but its activity decreased after long-term testing. The introduction of a two-phase catalytic system greatly enhanced its photostability.
A high-throughput sonochemical synthesis and testing strategy was developed to discover covalent organic frameworks (COFs) for photocatalysis. In total, 76 conjugated polymers were synthesized, including 60 crystalline COFs of which 18 were previously unreported. These COFs were then screened for photocatalytic hydrogen peroxide (H2O2) production using water and oxygen. One of these COFs, sonoCOF-F2, was found to be an excellent photocatalyst for photocatalytic H2O2 production even in the absence of sacrificial donors. However, after long-term photocatalytic tests (96 h), the imine sonoCOF-F2 transformed into an amide-linked COF with reduced crystallinity and loss of electronic conjugation, decreasing the photocatalytic activity. When benzyl alcohol was introduced to form a two-phase catalytic system, the photostability of sonoCOF-F2 was greatly enhanced, leading to stable H2O2 production for at least 1 week.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据