4.8 Article

Zero-Gap Bipolar Membrane Electrolyzer for Carbon DioxideReduction Using Acid-Tolerant Molecular Electrocatalysts

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Article Electrochemistry

Noncovalent immobilization of a nickel cyclam catalyst on carbon electrodes for CO2 reduction using aqueous electrolyte

Francesca Greenwell et al.

Summary: A nickel cyclam catalyst modified with pyrene has been synthesised and characterised, showing activity towards CO production in aqueous electrolyte. The non-covalent interaction between the pyrene functional group and carbon electrode supports helps to maintain the electroactivity of the catalyst.

ELECTROCHIMICA ACTA (2021)

Article Chemistry, Multidisciplinary

Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO2 Reduction

Christoph J. Bondue et al.

Summary: The study focuses on the electrochemical reduction of CO2 at gold electrodes under mildly acidic conditions. Increasing the CO2 partial pressure enhances the rate of CO2 reduction and suppresses hydrogen evolution, leading to high Faradaic efficiencies close to 100%. By suppressing hydrogen evolution and using protons for water formation, the study derived a general design principle for acid CO2 electrolyzers to match the mass transfer of protons to the electrode surface.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Chemistry, Multidisciplinary

Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer

Zhifei Yan et al.

Summary: This study investigates the effects of local environments on ionic flows in membrane electrolysers, and demonstrates the measurement and manipulation of local pH to improve CO₂ reduction efficiency.

NATURE CHEMISTRY (2021)

Article Chemistry, Physical

Pure Water Solid Alkaline Water Electrolyzer Using Fully Aromatic and High-Molecular-Weight Poly(fluorene-alt-tetrafluorophenylene)-trimethyl Ammonium Anion Exchange Membranes and Ionomers

Roby Soni et al.

Summary: This study improved pure water solid alkaline water electrolysis technology by using polymer electrolytes made from fully aromatic high-molecular-weight polymers. These improvements also enhanced the durability of membrane-electrode assemblies under high temperature conditions.

ACS APPLIED ENERGY MATERIALS (2021)

Article Nanoscience & Nanotechnology

Performance and Durability of Pure-Water-Fed Anion Exchange Membrane Electrolyzers Using Baseline Materials and Operation

Grace A. Lindquist et al.

Summary: Green hydrogen produced by water electrolysis powered by renewable electricity can replace fossil fuels. Anion-exchange-membrane (AEM) electrolyzers offer advantages of commercial proton-exchange-membrane systems with the use of less expensive materials and catalysts. Limited research and development in AEM electrolyzers due to lack of accessible materials and difficulty in comparing results, but using commercially available materials can provide a high-performance baseline for future development.

ACS APPLIED MATERIALS & INTERFACES (2021)

Article Multidisciplinary Sciences

CO2 electrolysis to multicarbon products in strong acid

Jianan Erick Huang et al.

Summary: Carbon dioxide electroreduction (CO2R) is being actively studied as a promising route to convert carbon emissions to valuable chemicals and fuels. A study found that concentrating potassium cations in the vicinity of electrochemically active sites accelerates CO2 activation to enable efficient CO2R in acid. The research achieved a high CO2R efficiency on copper at pH <1 with a single-pass CO2 utilization of 77%.

SCIENCE (2021)

Article Multidisciplinary Sciences

Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media

Mariana C. O. Monteiro et al.

Summary: Large scale CO2 electrolysis to produce CO has traditionally been done in neutral and alkaline media, but recent research shows that it can also be achieved in acidic media with higher efficiency. Operating at current densities up to 200 mA cm(-2), CO faradaic efficiencies between 80-90% were obtained in sulfate electrolyte, representing a step towards the application of acidic electrolyzers for CO2 electroreduction.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Physical

Single Pass CO2 Conversion Exceeding 85% in the Electrosynthesis of Multicarbon Products via Local CO2 Regeneration

Colin P. O'Brien et al.

Summary: The CO2 reduction reaction (CO2RR) provides an opportunity to consume CO2 and produce desirable products, but the alkaline conditions required often lead to loss of input CO2 to bicarbonate and carbonate, limiting the conversion of CO2 to multicarbon products. This study found that cation exchange membranes (CEMs) and bipolar membranes (BPMs) were not ideal for providing locally alkaline conditions, but the development of a permeable CO2 regeneration layer (PCRL) allowed for a more efficient CO2 conversion process with limited CO2 crossover.

ACS ENERGY LETTERS (2021)

Article Chemistry, Physical

Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution

Mariana C. O. Monteiro et al.

Summary: The study found that metal cations play a crucial role in stabilizing the CO2 intermediate during the reduction process on gold electrodes. Density functional theory simulations confirmed that partially desolvated metal cations enable the reduction by stabilizing the CO2- intermediate through short-range electrostatic interactions. In conclusion, the positively charged species from the electrolyte are key to stabilizing the crucial reaction intermediate.

NATURE CATALYSIS (2021)

Article Chemistry, Inorganic & Nuclear

Electrochemical CO2 Reduction in a Continuous Non-Aqueous Flow Cell with [Ni(cyclam)]2+

Changcheng Jiang et al.

INORGANIC CHEMISTRY (2020)

Article Chemistry, Multidisciplinary

Functionalization of Carbon Nanotubes with Nickel Cyclam for the Electrochemical Reduction of CO2

Silvia Pugliese et al.

CHEMSUSCHEM (2020)

Editorial Material Multidisciplinary Sciences

The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem

Joshua A. Rabinowitz et al.

NATURE COMMUNICATIONS (2020)

Review Chemistry, Inorganic & Nuclear

Transition metal macrocycles for heterogeneous electrochemical CO2 reduction

Fang Lv et al.

COORDINATION CHEMISTRY REVIEWS (2020)

Article Multidisciplinary Sciences

Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell

Shaoxuan Ren et al.

SCIENCE (2019)

Article Engineering, Environmental

Beyond the catalyst: How electrode and reactor design determine the product spectrum during electrochemical CO2 reduction

Jan-Bernd Vennekoetter et al.

CHEMICAL ENGINEERING JOURNAL (2019)

Review Chemistry, Multidisciplinary

CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions

Thomas Burdyny et al.

ENERGY & ENVIRONMENTAL SCIENCE (2019)

Article Chemistry, Physical

Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane

Danielle A. Salvatore et al.

ACS ENERGY LETTERS (2018)

Article Chemistry, Multidisciplinary

Covalent attachment of [Ni(alkynyl-cyclam)]2+ catalysts to glassy carbon electrodes

Almagul Zhanaidarova et al.

CHEMICAL COMMUNICATIONS (2018)

Article Chemistry, Multidisciplinary

Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO

Christine M. Gabardo et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Physical

Ion transport mechanisms in bipolar membranes for (photo)electrochemical water splitting

David A. Vermaas et al.

SUSTAINABLE ENERGY & FUELS (2018)

Article Electrochemistry

CO2 Electrolysis to CO and O-2 at High Selectivity, Stability and Efficiency Using Sustainion Membranes

Zengcai Liu et al.

JOURNAL OF THE ELECTROCHEMICAL SOCIETY (2018)

Article Chemistry, Physical

Electrolysis of CO2 to Syngas in Bipolar Membrane-Based Electrochemical Cells

Yuguang C. Li et al.

ACS ENERGY LETTERS (2016)

Article Chemistry, Multidisciplinary

The Homogeneous Reduction of CO2 by [Ni(cyclam)+: Increased Catalytic Rates with the Addition of a CO Scavenger

Jesse D. Froehlich et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Review Chemistry, Multidisciplinary

Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts

Jacob Schneider et al.

CHEMICAL SOCIETY REVIEWS (2012)

Article Chemistry, Multidisciplinary

Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO

Jacob Schneider et al.

ENERGY & ENVIRONMENTAL SCIENCE (2012)